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Abstract: Computation-in-Memory accelerators based on 

resistive switching devices represent a promising approach to 

realize future information processing systems. These architectures 

promise orders of magnitudes lower energy consumption for 

certain tasks, while also achieving higher throughputs than other 

special purpose hardware such as GPUs, due to their analog 

computation nature. Due to device variability issues, however, a 

single resistive switching cell usually does not achieve the 

resolution required for the considered applications. To overcome 

this challenge, many of the proposed architectures use an 

approach called bit slicing, where generally multiple low-

resolution components are combined to realize higher resolution 

blocks. In this paper, we will present an analog accelerator 

architecture on the circuit level, which can be used to perform 

Vector-Matrix-Multiplications or Matrix-Matrix-Multiplications. 

The architecture consists of the 1T1R crossbar array, the 

optimized select circuitry and an ADC. The components are 

designed to handle the variability of the resistive switching cells, 

which is verified through our verified and physical compact 

model. We then use this architecture to compare different bit 

slicing approaches and discuss their trade-offs. 
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1 Introduction 

The dominance and commercial success of machine 

learning algorithms for the processing of images, speech 

and video signals [1] in the last ten years, has largely 

been enabled by the utilization of Graphics Processing 

Units (GPUs) during training [1, 2]. These successes 

have further lead to the development of Application 

Specific Integrated Circuits (ASICs), specifically 

targeted for machine learning workloads. Examples of 

such chips are the Tensor Processing Units from Google 

[3] or Hanguang from Alibaba [4] further improving the 

efficiency of the hardware for machine learning 

algorithms. The great performance benefits have come 

at the cost of exponentially increasing energy cost for 

training and inference [5]. During the training phase of 

a machine-learning algorithm the parameters of a 

computational model, such as a multilayer neural 

network, are adapted to produce distinguishable 

mappings of different training inputs to output 

categories. The goal of the training phase is to enable the 

network to independently match unseen inputs to a range 

of trained output categories during the inference phase 

with as high accuracies as possible. Accelerators for 

machine learning algorithms can also be realized based 

on memristive devices such as filamentary Valence 

Change Mechanism (VCM) cells [6-8]. 

VCM cells are a type of two terminal and non-volatile 

redox based resistive switching random access memory, 

in which the resistive switching is based on the 

movement of oxygen vacancies. Filamentary switching 

VCM cells consist of an electronically active electrode 

(AE), a mixed ionic-electronic conducting layer and an 

ohmic counter electrode. The AE is characterized by a 

high work function from the metal to the oxide, while 

the ohmic electrode forms a low work function interface. 

The oxygen vacancies are then moved, via an electrical 

field, near the AE. An accumulation of them at the AE 

interface decreases the resistance, while a reduction of 

their number increases the resistance of the cell [6, 9]. 
These devices are also called memristive devices [10]. 
They can be switched between at least one high resistive 

state (HRS) and one low resistive state (LRS), although 

in the context of machine learning often the equivalent 

conductances, low conductive state (LCS) for the HRS 

and high conductive state (HCS) for the LRS are used. 

Using the conductances has the advantage, that they are 

directly proportional to the current values. The transition 

from a LCS towards a HCS is called a SET operation. 

The opposite direction is termed RESET operation. 

VCM cells can also switch in a more gradual fashion in 

the RESET/ SET direction, by controlling the maximum 

voltage/ current. For machine learning accelerator 

applications, VCM devices are often integrated together 

with N-type metal-oxide-semiconductor (NMOS) 

transistors in 1T1R crossbar arrays, to prevent sneak 

path currents [11] and to allow for a precise 

programming of the devices without program disturb of 

half-selected devices [12]. Recently, major 

semiconductor companies have displayed the feasibility 

of realizing large-scale reliable memories based on 

filamentary VCM systems for memory applications, 

displaying the maturity and reliability of this technology 

[13-15]. The main selling point of using memristive 

devices is their ability to unite computation and memory 

in a single physical location, alleviating the limitations 

of von-Neumann architectures [16]. Because of this 

advantage, many architectures have been proposed, that 

enable Computation in Memory (CIM) for the 

acceleration of machine learning algorithms. These 

architectures often focus on the central Vector-Matrix-

Multiplication (VMM) or Matrix-Matrix-Multiplication 
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(MMM) operations to improve the energy efficiency of 

the inference phase for deep neural networks [7-8, 17-
18]. It should be noted, that VMM and MMM operations 

are not only required for machine learning, but also for 

example in scientific computing [19, 20]. System level 

analyses have already shown the benefits of memristive 

matrix operation accelerators, and found especially 

benefits regarding the energy consumption, ranging 

from 10x to 1000x [17, 21-22]. In this work, we are 

proposing and investigating such an VCM-based 

accelerator on the circuit level. The required theoretical 

background as well as the different bit slicing techniques 

are introduced in Section 2. In Section 3, the designed 

circuits will be discussed in more detail, the bit slicing 

approaches will be compared and their variability 

tolerance will be discussed. Section 4 summarizes the 

paper and gives an outlook for future work. 

2 Background and Simulation Architecture 

Figure 1 shows the block level architecture, organized 

around the 1T1R crossbar array. The input vectors are 

applied serially to a shift register and then in parallel to 

the 1T1R array via the Wordline (WL) drivers. The 

Sourcelines (SL) are connected to the read drivers or 

RESET drivers via the SL select circuits. Similarly, the 

SET drivers and the ADC stage are connected to the 

Bitlines (BL), via the BL select circuit. 

For the simulation of the VCM devices we used the 

physically motivated compact model JART VCM v1b 

Readvar [23-26], which can describe the programming 

variability between different devices (device-to-device 

variability), between different cycles in a single device 

(cycle-to-cycle) and between different read operations. 

Additionally, it can describe different types of 

filamentary VCM devices such as ZrOx [24, 26] 
HfOx [27][28] TaOx [29] and SrTiO3 [30]. The 

parameter set we are using was fitted to ZrOx devices to 

describe the reliability properties relating to read disturb, 

read noise and programming variability for binary VMM 

[24]. We use the parameter set shown in Table I of [24] 
for the deterministic and variability parameters. 

Programming variability describes the variation of 

conductance states during switching. It can be reduced 

via program verify algorithms [31]. Read disturb and 

read noise affect the programmed conductance levels 

over time. Read noise is an undirected and random 

process [26], while read disturb depends on the voltage 

polarity and amplitude. For the ZrOx devices we have 

shown that read disturb does not represent a problem, 

when reading in the RESET direction and keeping the 

read voltage below 500 mV [24]. This recommendation 

is followed here. The transistors in the arrays and all 

other circuits are modeled using a commercially 

available 180 nm CMOS technology. 

To perform a VMM operation, a row of the matrix is 

mapped to a column of the crossbar. In the case of only 

binary weights, this means that ‘0’ is represented by the 

LCS and ‘1’ is represented by the HCS. In the case of 

multilevel weights, proportionally mapping the matrix 

values, by using equidistant conductance spacing, is the 

easiest mapping strategy. The crossbar is enabled to 

perform certain computational operations via the 

periphery. To perform VMMs, the periphery consists of 

SET and RESET drivers for the programming, digital to 

analog converters (DAC) to apply the input vectors and 

analog to digital converters (ADC) to convert the analog 

result of the VMM into a digital representation. While 

the DACs are often realized as buffers that can only 

apply binary voltages to the crossbar (0 V or VDD = 5 V), 

the ADCs are more complex and therefore occupy a 

significant part of the total accelerator area and consume 

a lot of energy. For example, in [8] it consumed 58 % of 

the computing tiles power and occupied 31 % of the total 

area and in [32] it required more than 75 % of both 

energy and power. Consequently, the optimization of 

ADC designs is a large focus with a wide range of 

concepts being explored [8, 33-34]. Due to the high 

precision requirements of VMM for the training of deep 

neural networks (DNN) or for scientific computing 

applications, often a technique called bit slicing is used 

in memristive hardware accelerators. Bit slicing 

combines multiple lower resolution components 

together to realize higher resolution blocks. During each 

evaluation cycle, a dot product operation is computed in 

 
Figure 1: Block level analog VCM architecture. Bit slicing is 

investigated in the NxM 1T1R crossbar array (blue rectangle) or 

in the ADC stage (red rectangle). 
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our proposed architecture. For a complete VMM or 

MMM these dot product results have to be shifted and 

added via digital CMOS circuits to the right bit positions 

[20, 35]. For the ADC to be able to convert all possible 

dot product results of the VMM to digital signals without 

any loss of information it needs a minimum resolution 

of [8]: 
𝐵ADC =

{
𝐵w + 𝐵in + ⌈log⁡(𝑁)⌉, if⁡𝐵w > 1, 𝐵in > 1,

𝐵w + 𝐵in ⋅ +⌈log(𝑁 − 1)⌉, otherwise.
⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

In (1) BW is the number of bits per weight, Bin is the 

number of bits per input and N is the number of rows in 

the crossbar being read out. Bit slicing can be applied to 

the weights (weight slicing), the input voltages (input 

slicing) and the number of rows that are evaluated by the 

ADC (ADC slicing). Input slicing can be performed, by 

breaking down a high-resolution input voltage into 

multiple equal pulses after one another at 1-Bit 

resolution (Pulse Frequency Modulation). Another 

approach for input slicing would be Pulse Width 

Modulation, where the proportion of ‘On’ time to the 

total pulse time period is varied. In our architecture, we 

only consider the 1-Bit input case. Weight slicing on the 

weight values can be realized in two different ways, 

either directly in the array or in the peripheral circuitry. 

In the direct approach, a multibit matrix value is mapped 

to different numbers of columns, depending on the 

resolution of the 1T1R cells. This approach is shown in 

Equation (2) 

[
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, (2) 

where the matrix on the left side represents the numerical 

matrix, from which the first row is mapped to the 

columns of the crossbar. In the case of 2-Bit resolution 

devices (possible values from ‘0’ to ‘3’) one column is 

required as indicated by the single matrix. If the devices 

only have a resolution of 1-Bit (right side) three columns 

of the crossbar are required. In the middle and on the 

right side, each row represents an individual 1T1R cell. 

Another approach of performing the weight slicing has 

been shown in an analog fashion in [33], where the 

individual columns are weighted differently through the 

ADC. Alternatively, weight slicing can be done after the 

ADC stage, in the digital periphery, via shift and add 

operations [20]. From equation (2) it can already be 

seen, that having higher resolution devices, saves 

considerable space or increases the information density 

of the array. Performing the weight slicing by increasing 

the resolution of the 1T1R elements has the additional 

advantage that the periphery does not have to be 

modified. However, it must then be designed, such that 

it can handle the increased resolution according to 

equation (1). Lastly, the bit slicing can also be applied to 

the ADC by adapting the number of rows that are 

evaluated in a given cycle. While bit slicing is 

conventionally used to realize higher precision 

components from lower precision components, it can 

also be used to reduce the requirements for the ADC. 

3 Results 

3.1 Peripheral Circuits 

Figure 2 shows the selection circuits (a) as well as the 

ADC (b). The select circuitry for the BL and SL are 

structurally the same, but connected to different control 

signals and peripheral blocks for BL (marked in orange) 

and SL (marked in blue). The left branch uses a 

transmission gate to connect the RESET/SET drivers to 

the BL/SL respectively. Those drivers are required to 

program the VCM cells. At the opposite side of the 

active driver, the BL/SL is pulled to ground via an low 

ohmic NMOS transistor. The right branch of the select 

circuit is connected to the read driver /sensing stage for 

the BL/SL side. To increase the precision in the read path 

we have removed the transmission gates to reduce the IR 

drop. Instead, power gating is used to set this path high 

ohmic. Power gating is achieved via a PMOS transistor 

between the supply voltage and the supply voltage pin 

of the sensing stage. The ADC circuit is inspired from 

[33, 36], as the sensing stage from [33] is combined with 

the voltage controlled oscillator from [36]. 
A VMM is performed, by first turning on the read 

drivers. This is done by setting the ‘VMM Control’ 

signal and the ‘READ’ signal to ‘1’. The read drivers are 

implemented as digital buffers and apply a voltage of 

2.2 V via the SL select circuit to the 1T1R crossbar. The 

ADC keeps the voltage at the output of the crossbar at 

2 V, resulting in a voltage drop of 0.2 V across the 1T1R 

elements. 

Then, the logical input vector is read in and applied via 

the Wordlines (WL1 … WL1N). The Wordline drivers 

(or input DACs) are realized as digital buffers, either 

applying 0 V or VDD (5 V) to the transistor gates. This 

reduces the required driving power for the WL buffers, 

as they only have to drive a certain number of transistor 

gates, depending on the number of selected columns. 

The input vector is applied serially and fed through a 

shift register, to be applied in parallel to the WL drivers 

(see Figure 1). The correct column is chosen via the 

‘SELECT’ signal, which is generated via a 

demultiplexer, filled by another shift register. In this 
way, single columns, multiple columns or all columns 

can be selected for an evaluation cycle. The maximum 

number of columns, which can be activated at the same 
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time, depends on several factors, e.g. the layout size of 

the ADC, or the requirements of the application. For the 

highest throughput, all columns should be active at the 

same time, requiring one ADC per column. Our chosen 

approach allows for complete flexibility as to the 

number of activated columns. If multiple columns share 

a single ADC, e.g. every four columns have one ADC, 

the ‘VMM Select’ signal can be used to switch between 

these four columns. This approach is useful, if the 

columns should be weighed differently in the digital 

periphery as in the first cycle all first bit positions (20) 

can be evaluated, in the second cycle all second bit 

positions (21) can be evaluated and so on. Via the ‘VMM 

Select’ signal one can also switch between different 

numbers of columns to be evaluated. After all 

components have been activated, they are kept active for 

the evaluation time, which can also be chosen in a 

flexible fashion depending on the required accuracy. 

Programming of cells is performed individually, via the 

left side path of Figure 2 (a). To perform a write 

operation, first the ‘WRITE’ signal is set to one and the 

column is chosen via the ‘SELECT’ signal. As for the 

VMM, the correct row can be chosen via the logical 

input vector by only applying a ‘1’ to the programmed 

cell and applying ‘0’ to all other rows. Depending on the 

switching direction, the SET/RESET driver is connected 

at the BL/SL side while the SL/BL is set to ground via 

an NMOS transistor. The configuration of the periphery 

for the different operation modes is summarized in 

Table I. The signals in bold print are global signals, that 

are only required once for all columns. 

The full ADC, shown in Figure 2 (b), can be split into 

three parts, namely the voltage stabilization stage 

(marked in blue in Figure 2), the ring oscillator stage and 

the counter stage. The sensing stage clamps the BL 

voltage to the reference voltage VRef = 2 V during the 

VMM operation to achieve a constant voltage drop 

across the 1T1R crossbar, which increases the resolution 

of the ADC [33]. With the read driver applying 2.2 V 

and VRef set to 2 V, 0.2 V drop over the 1T1R cells. This 

is the same voltage configuration for which the 

conductance levels are verified, to prevent the IV 

nonlinearity of the VCM cells from affecting the results. 

Via the differential amplifier it is ensured, that the 

resulting current levels are spaced linearly. N1 mirrors 

the current from N0 into the voltage controlled oscillator 

(VCO) stage, where it is converted into the supply 

voltage of the VCO, VDD,VCO by Rsupp. Thus, the VCO 

oscillates at different frequencies, depending on its 

supply voltage. To improve the counting of the pulses, 

the output signal of the VCO is buffered through an 

inverter chain. As the ADC converts a amplitude 

encoded signal (crossbar output current) into a time 

encoded signal (pulse train to be counted), higher 

accuracies can be achieved by increasing the conversion 

time [36]. The time for which the pulses are counted 

depends on the required precision as will be shown in 

the next section. 

 

3.2 Basic Performance Characteristics 

In order to study the effects of the different approaches 

to bit slicing, first a baseline case needs to be defined. 

Here, we choose a simulation in which 16 rows with 

binary devices are read out with a single 4-Bit ADC. The 

16 rows are chosen to not put to high requirements on 

the devices and the ADC. For the chosen array 

transistors (W=10 µm, L=500 nm) and the device states 

Ndisc, LRS/HRS = 0.904·1026 1/m3/ 0.148·1023 1/m3
 the 

resulting resistances of the 1T1R structure are 

Table I: Configuration of BL/SL select circuits for the 

different operations in the selected column. 

Signal Name Write Read  VMM 

WRITE 1 0 0 
READ 0 1 0 

VMM CONTROL 0 0 1 
SET/RESET 1/0 or 0/1 0/0 0/0 

VMM SELECT 0 0 1 
SELECT 1 1 1 

 

 
Figure 2: Circuit Blocks of the Bitline and Sourceline select 

circuits (a) and the ADC stage (b). In (a) signal names without 

curly braces are used in the BL and SL select circuits. For the 

signals in curly brackets the orange/ blue colored signals are 

applied in the BL/ SL select circuit. 
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4.65 kΩ/ 95.97 kΩ or 214.95 µS/ 10.42 µS. In the 1-Bit 

case HRS represents the logical ‘0’ and the LRS 

represents the logical ‘1’. For 2-Bit the HRS still 

represents level ‘0’,while the LRS represents level’3’. 

Both values were evaluated at a read voltage of 0.2 V in 

the RESET direction and a gate voltage of 5 V. For the 

investigation of 2-Bit devices we add two additional 

levels using proportional conductance mapping [37] at 

6.78 kΩ (= 147.4 µS) for a ‘2’ and 12.74 kΩ 

(= 78.47 µS) for a ‘1’. This leads to a HRS/LRS ratio of 

around 20. For this case, Figure 3 (a) shows the number 

of generated pulses as a function of the number of 

devices in the HRS and for different conversion times. 

In this simulation, all WL inputs are at VDD. A higher 

number of HRS represents smaller numerical values 

stored in the matrix and results in a larger number of 

generated pulses, as the smaller crossbar current (IBL) is 

mirrored from N0 to N1 and results in a bigger voltage 

drop over RSupp. This in turn reduces the supply voltage 

of the VCO (VDD,VCO) which reduces its oscillation 

frequency. If the conversion time is increased, the 

number of generated pulses is increased linearly. This 

makes distinguishing the different levels easier, as the 

differences between adjacent levels are increased 

linearly as well. The black solid lines at the right side of 

Figure 3 (a) indicate the required counter length which 

increases with increasing conversion times. Therefore, 

there exists a tradeoff between accuracy and variability 

tolerance on the one side and energy consumption and 

area on the other side, as longer counters consume more 

energy and require more space, but enable longer 

conversion times. Figure 3 (b) shows the minimum 

difference between the number of generated pulses over 

the conversion time for the same inputs as in (a). As 

expected from (a), the difference increases very linearly 

from two at 160 ns conversion time to 12 for a 

conversion time of 760 ns. The conversion time consists 

of a setup time until the VCO reaches its correct 

frequency and the actual counting time. Based on the 

results from Figure 3 we can see how the ADC can trade 

off between low precision, low energy consumption and 

small area towards high precision, high energy 

consumption and large area. In this way, the operational 

parameters and design choices are made to follow 

different optimization routes depending, for example, on 

the device technology, the timing, the energy or the 

accuracy requirements of the application. From these 

initial simulations we define our baseline case as a 

conversion time of 260 ns for a minimum guaranteed 

pulse difference of four. Apart from being able to 

tolerate more device variability, the guaranteed 

minimum pulse difference also allows the ADC to 

distinguish between more dot products. Those dot 

products can be realized by using multilevel devices 

with additional conductance states between the 

minimum and maximum values. It should be noted, that 

the worst case for 1-Bit devices is observed for the dot 

products (i)⁡(𝑉DD⁡0⁡… ⁡0) ⋅ (LRS⁡HRS⁡… ⁡HRS)𝑇 = 1 

and (ii)⁡(𝑉DD⁡𝑉DD…𝑉DD) ⋅  (HRS⁡HRS⁡… ⁡HRS)𝑇 = 0. 

In this case the ADC has to differentiate between 16 

selected HRS states (= 95.92 kΩ/16 ≈ 6 kΩ) and one 

selected LRS (4.65 kΩ). For this case, the ADC 

produces a difference in the number of generated pulses 

of one for the baseline case (260 ns, 16 binary devices). 

To guarantee a perfect precision, this case needs to be 

distinguished. However, this worst case will occur with 

a very low probability. To mitigate this difficulty, higher 

HRS/LRS are required or less devices can be read out at 

the same time. 

3.3 Comparing Different Bit Slicing Cases 
In our analysis we compared two different types of bit 

slicing, namely weight slicing between 1-Bit and 2-Bit 

devices and ADC slicing, where either 16, 8 or 4 rows 

are read out at the same time. The 1-Bit and 16 rows case 

was previously discussed as the baseline case for a 

conversion time of 260 ns, giving a guaranteed pulse 

difference of four in Figure 3. The three other bit slicing 

cases are then simulated for conversion times long 

Figure 3: Generated number of pulses as a function of the number 

of devices in the HRS for different conversion times (a). The 

required counter length is indicated on the right side of (a). (b) 

shows the minimum difference in generated pulses for different 

conversion times. 

 
Figure 4: Average energy consumption of the different circuit 

components for the different bit slicing approaches. 
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enough to guarantee the same pulse difference, i.e. the 

same accuracy or noise resilience. In the case of 2-Bit 

devices this requires the counter to run for a longer time 

than in the case of 1-Bit devices, as the additional levels 

are added in between the 1-Bit levels. The longer run 

time of the counter can also require a bigger counter 

circuit, as indicated in Figure 3 (a). Both factors increase 

the energy consumption, but a higher number of 

performed computations compensates them. In the case 

of using only 8 rows or 4 rows, the counter can be 

implemented smaller, as the maximum number of pulses 

to be counted is smaller. However, to achieve the same 

number of bit operations, the computation of 8 rows has 

to be repeated twice. For 4 rows it must be repeated four 

times. Under the requirement of the same precision, the 

conversion time is increased to 760 ns for the 2-Bit 16 

rows case and it is decreased to 130 ns for 1-Bit/8 rows 

and decreased to 65 ns for 1-Bit/4 rows. The counter 

width required is 8 Bit in the baseline case, 9-Bit in the 

2-Bit/16 rows case, 7-Bit in the 1-Bit/8 rows case and 5-

Bit in the 1-Bit weight/4 rows case.  The average energy 

consumption of the different components and the 

average total energy per bit are shown in Figure 4. For 

the total energy per bit the energies of the three 

components are added together and then divided by the 

number of bit operations. This number is 32 for 2-Bit 16 

rows, 16 for 1-Bit 16 rows, 8 for 1-Bit 8 rows and 4 for 

1-Bit 4 rows. From the results it can be seen, that the 

counter is the largest energy consumer, followed by the 

VCO and then the crossbar. Additionally, the results 

suggest that it is more energy efficient in the given 

architecture to perform many small dot product 

operations with 1-Bit devices, as those can be finished in 

a much faster time and with smaller counters. 

 

3.4 Variability Tolerance 
VCM devices show different types of variability, such 

as device-to-device (d2d) variability, cycle-to-cycle 

(c2c) variability and read-to-read variability [38]. For 

the considered use case of VMM for machine learning 

accelerators, the most important variability effects are 

read disturb, read noise and programming variability 

[24]. Regarding the impact of read disturb, we showed 

in [24] that reading in the RESET direction is preferable 

to the SET direction and that read voltages up to 0.5 V 

over single devices are possible in the case of binary 

devices. As the read voltage here is 0.2 V in the RESET 

direction, read disturb will likely not be an issue. 

Regarding the read noise, we calculated it at the different 

conductance levels. Table II summarizes the VCM 

device conductances of the four considered levels and 
the minimum, median and maximum values for the 

amount of read noise and for the number of oxygen 

vacancies at these levels. With the chosen transistor 

dimensioning (W=10 µm, L=500 nm) the conductance 

of the 1T1R structure is almost completely determined 

by the resistances of the VCM cells. The JART VCM 

v1b Readvar model from [26] is then used to simulate 

the minimum, median and maximum amount of ∆G/G at 

the four different conductance levels, under the same 

read conditions as described above. The read variability 

model first discretizes the number of oxygen vacancies 

in the disc and then changes this number as described in 

[26]. The filamentary oxide in the JART VCM v1b 

model is simplified via a well conducting oxygen 

reservoir, the plug, and the variable resistance disc 

region. For the discretization, the disc volume is 

multiplied with the oxygen vacancy concentration at the 

different levels. The worst case noise at a given vacancy 

concentration is then obtained for the smallest filament 

volume, as this gives the smallest number of oxygen 

vacancies. Adding or removing one vacancy has then a 

larger influence on the conductance, compared to larger 

disc volumes. The rightmost column in Table II shows 

the floored number of vacancies at the different 

conductance levels for the different filament volumes. 

The minimum number of vacancies leads to the 

maximum ∆G/G. As can be seen from the results, the 

worst-case noise can be very significant at the lower 

conductance levels (up to 1). The number of vacancies 

in this case is only two. However, most devices will have 

filament volumes close to the median case, where the 

read noise is between 5 % at the smallest conductance 

and 0.8 % at the highest conductance level. This read 

noise levels are then the best case accuracies for the 

different levels for the median devices. To program 

multilevel devices usually write verify algorithms are 

used [31, 39]. Even if it was possible to program levels 

with a 100 % accuracy, the intrinsic read noise would 

still lead to some uncertainty at the different 

conductance levels.  

With the read noise results we can reconsider the 1-Bit 

worst case from Section 3.1, between 16 selected HRS 

or level 0 states (= 16*10.44 µS = 167.04 µS) and one 

selected LRS or level 3 (223.1 µS). In the 

JART VCM v1b Readvar model the read noise can 
change the number of vacancies by two at most. In the 

worst case, all the devices at level zero gain two 

additional vacancies, increasing their conductance, 

Table II: Minimum, Median and Maximum Read Noise 

Impact for the Considered Conductance Levels. 

Level GVCM 

[µS] 
Min/Med/Max 

∆G/G 
⌊Max/Med/Min 

# of 

vacancies⌋ 
0 10.44 0.01/0.05/1 139/33/2 
1 79.54 0.004/0.015/0.3 459/110/6 
2 151.2 0.0024/0.01/0.19 672/161/10 
3 223.1 0.0018/0.008/0.14 848/203/12 
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while the single level 3 device has two vacancies 

removed, decreasing its conductance. In this case, the 

equivalent conductance will be increased by 10 % for 

the level 0 devices and it will be decreased by 1.6 % for 

the level 3 device. The two conductance levels are then 

183.74 µS and 219.53 µS. With these worst case 

conductances considering read noise we can calculate 

the programming accuracy at which the two levels will 

overlap, making a distinction impossible. This is 

calculated by 219.53 µS/183.74 µS = 1.19, meaning that 

the program verify algorithms have to be able to achieve 

errors smaller than 9.5 %. With the given ADC two 

neighboring conductance states can in principle always 

be resolved, if the conversion time is increased. In 

practice, again it would be a better solution to use higher 

conductance ratios, or to relax the accuracy requirements 

to allow for some errors in the VMM. With regard to the 

bit slicing approaches higher device resolutions make 

the differentiation much more difficult, as the levels are 

here inserted between the 1-Bit levels. Then the 

conductances have to be spread out over a larger range 

or fewer rows have to be read out at the same time. 

Reading out fewer rows at a time does not directly affect 

the accuracy, due to the linear conductance spacing. 

However, it improves the energy consumption as shown 

in section 3.3.  

4 Conclusion 

In this work, we have presented a CIM analog core 

architecture based on filamentary VCM devices. We 

have identified areas where different bit slicing 

techniques can be applied and shown the associated 

energy and latency tradeoffs between them. 

Understanding these tradeoffs is important, for future 

design space exploration. With our proposed ADC 

concept, it is possible to trade off accuracy for latency 

and energy consumption, especially interesting for 

machine learning or neuromorphic computing 

algorithms in which the accuracy of individual VMM 

might not directly affect the accuracy of the algorithm. 

Furthermore, we have discussed the effect of VCM 

intrinsic reliability issues and their impact on the 

architecture. 
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